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In this paper we present a primitive variable Newton-based solution
method with a block-line linear equation solver for the calculation of
reacting flows. The present approach is compared with the stream
function-vorticity Newton’s method and the SIMPLER algorithm on
the catculation of a system of fully elliptic equations governing an
axisymmetric methane—air laminar diffusion flame. The chemical reac-
tion is medeled by the flame sheet approximation. The numerical solu-
tion agrees well with experimental data in the major chemical species.
The comparison of three sets of numerical results indicates that the
stream function-vorticity solution using the approximate boundary
conditions reported in the previous calculations predicts a longer fiame
tfength and a broader flame shape. With a new set of modified vorticity
boundary conditions, we obtain agreement between the primitive
variable and stream function—verticity solutions. The primitive variable
Newton's method converges much faster than the other two methods.
Because of much less computer memory required for the block-
line tridiagona! solver compared to a direct solver, the present
approach makes it possible to calculate multidimensional flames with
detailed reaction mechanisms. The SIMPLER algorithm shows a slow
convergence rate compared to the other two methods in the present
calculation.  © 1993 Academic Press. Inc.

1. INTRODUCTION

Many gas turbines and commercial burners employ
diffusion flames as their primary flame type. The ability to
predict the coupled effects of transport phenomena with
complex chemical process in these systems is critical in
improving engine efficiency and in understanding the emis-
sion process. The solutton of laminar flames can also be
employed in the calculation of turbuient reacting flows
using the laminar flameiet model, which interprets the
turbulent flame as being comprised of an ensemble of
laminar flamelets.

The equations governing laminar flames are strongly
coupled together as a result of the interaction between the
fluid transport, the heat transfer, and the chemical pro-
cesses. The equations are also characterized by the presence
of stiff source terms [13]. The solution of multidimensional
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laminar diffusion flames requires the calculation of a large
system of highly nonlinear elliptic equations. Newton's
method has been proven to be a robust and efficient
approach in the numerical calculation of such a system
[17]. Recently, a few numerical solutions of axisymmetric
laminar diffusion flames with different levels of chemical
kinetic models have been reported [12, 17]. The numerical
approaches used in these calculations were limited to the
stream function—vorticity formulation. Such a formulation
was adopted since the determination of the pressure in these
systems is difficult due to its first-order nature in the
momentum equations and its absence. in the continuity
equation.

One advantage of the stream function—vorticity formula-
tion is that it eliminates the pressure as a dependent variable
from the governing equations. However, this reduction
brings with it some side effects. The correct boundary condi-
tions for the vorticity are difficult to determine in the case of
complex flows [14]. The vorticity boundary conditions
specified from the stream function, e.g., at a solid wall, often
cause trouble in obtaining a converged solution. The uncer-
tainty of the vorticity boundary conditions at the inlet of the
computational domain may result in a rough approxima-
tion of the true solution, thus altering the solution of the
stream function whose derivatives are used in forming the
velocity. In diffusion flames, combustion is controlled
primarily by the rate at which the fuel and oxidizer are
brought together m stoichiometric proportion. Thus, an
accurate representation of the flow field is a precondition for
the overall accuracy of the solution. In addition, the
climinated pressure may be desired as a solution during the
iteration to evaluate thermodynamic properties, transport
coefficients, and reaction rates (e.g, Lindemann fall-off
effect) in some cases. Furthermore, in many problems, it is
easier to estimate a reasonable velocity and pressure field
rather than a stream function and vorticity field. Finally, a
stream function-vorticity approach intrinsically limits the
modeling of reacting flows to two-dimensional configura-
tions including axisymmetric problems. While a vector—
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potential vorticity model can be formulated for three-
dimensional flows, they introduce additional dependent
variables (1].

The application of Newton’s method to a primitive
variable formulation of two-dimensional non-reacting
viscous flows has been reported previously [22-24]. In
these studies, the linear Newton equations were solved by a
direct matrix solver. The reason for this is that some zero
diagonal elements were present in the Jacobian matrix as a
result of the absence of the pressure in the continuity equa-
tion. This prevented the use of a block-line iterative solver
without pivoting in the diagonal blocks. Computations
similar to those reported in [22-241 require a great amount
of main memory and are possible only on a supercomputer.
In the numerical modeling of multidimensional reacting
flows, the computer memory size and time demanded by
Newton’s method, even with an iterative linear equation
solver, is already near the computational limits of some
supercomputers. For example, the number of nonzero
storage locations in the Jacobian matrix formed in a
Newton iteration in a nine-point finite difference scheme
is given by 9 x N x Nx NODE, where N is the number of
unknowns and NODE is the number of mesh points in the
computational domain. It is clear from this discussion that
it is essentially infeasible to apply the Newton direct solver
approach in modeling multidimensional reacting flows even
with a simplified chemistry model. The difficulties described
so far can be resolved by introducing Newton’s method with
a primitive variable formulation in such a way that the
Jacobian matrix can still be sclved by a block-line tri-
diagonal iterative method. The advantages of this numerical
approach are; (1) Newton’s method is particularly robust in
handling the nonlinearity and the coupled effects among the
equations of reacting flows; (2) the primitive variable
formulation is suitable for complex flows and three-
dimensional problems; (3} the use of a block-line
tridiagonal iterative method for the Jacobian matrix greatly
reduces the requirement on the computer memory and thus
makes it possible for large scale computations, e.g., three-
dimensional problems.

In this paper we employ a primitive variable Newton's
method to calculate a fully coupled elliptic model of an
axisymmetric, methane-air, laminar diffusion flame in a
confined co-flowing jet (see Fig. 1). The chemistry is
approximated by a flame sheet model [2, 17]. The trans-
port coefficients are evaluated with simple empirical
formulae. The purpose of using a flame sheet model in the
present work is twofold: the performance of the present
numerical method is compared with Newton’s method in
the stream function—vorticity formulation and the
SIMPLER algorithm [127] on the basis of this model; the
solution of the flame sheet model can be used as an initial
estimate for calculations using detailed chemistry models
[11, 17, 257. The Patankar-Spalding SIMPLER algorithm
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FIG. 1. Schematic of a diffusion flame in a confined co-llowing burner.

solves the primitive variable equations and has been quite
successful in solving non-reacting flows, but it often fails or
becomes prohibitively slow in calculating reacting flows
associated with high nonlinearity in the source terms. In
the next section, the flame sheet problem is formulated using
the primitive variables and the stream function-vorticity
approach. The numerical methods are presented in Sec-
tion 3 and the numerical results are discussed in Section 4.
Some final comments are contained in Section 5.

2. Problem Formulation

The laminar diffusion flame considered in the present
work is produced by an axisymmetric co-flowing jet in
which the fuel flows in the center jet with the air stream from
the surrounding jet (see Fig. 1). The jet is confined by a
shield wall. A series of extensive experimental studies have
been made on this burner [12, 137, which makes it a good
test case for the calculation of two-dimensional laminar dif-
fusion flames. The previous numerical modeling of similar
burners ranged from a flame sheet model to a complicated
chemical reaction mechanism involving 16 chemical species
equations [ 12, 17]. All previous elliptic solutions for this
burner configuration were obtained using the stream
function-verticity formulation.



PRIMITIVE VARIABLE NEWTON'S METHOD

Our purpose in the present work is to demonstrate that
Newton's method in the primitive variable setting is com-
putationally feasible and can perform well against Newton’s
method when applied te the stream function—vorticity
formulation and the SIMPLER algorithm. In the chemical
reaction model that follows, a flame sheet approximation is
employed.

2.1. Primitive Variable Formulation of the Flame Sheet
Moade!

The flame sheet concept was proposed by Burke and
Schumann [27. The flame sheet model of a laminar diffu-
sion flame describes the chemical reaction with a one-step
global irreversible reaction. The reaction is assumed
infinitely fast and limited to a very thin exothermic reaction
zone which separates the fuel and oxidizer. In the reaction
zong, the fuel and oxidizer react in stoichiometric propor-
tion. With such an approximation, no fuel is present on the
oxidizer side and vice versa.

In the presence of an inert gas (N), the reaction of fuel
(F), and oxidizer (X) to form product { P) can be written in
the form

viF+vyX+N—v,P+N, (2.1

where v, v, and v, are the stoichiometric coefficients of
the reaction. To further simplify the governing equations
[17], we assume that (1) thermal diffusion is negligible, (2)
the specific heats, ¢, and ¢, (k= F, X, P, N}, are constant,
(3) the ordinary mass diffusion velocities obey Fick’s law,
and (4) the Lewis numbers of all the species are equal to
unity.

With these approximations, the energy equation and
the species equations become similar mathematically, By
introducing Shvab-Zeldovich variables, the solutions of
the temperature and the species can be formulated from the
.conserved scalar solution of a source-free convective-
diffusive equation [177]. The primitive variable governing
equations for a flame sheet model of an axisymmetric,
laminar diffusion flame in cylindrical coordinates are

Continuity,
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Of critical importance to the flame sheet model is the
ability to recover the temperature and the major species
profiles from the conserved scalar solution. If we denote
variables at the flame front with the subscript f, then it can
be shown that the location of the flame front at the axial
coordinate z can be obtained using

S(rf)llﬁxedz=Sf

Wixvx
= Yxo/(yxo'*“ W Ve YF,),

where the subscripts [ and O refer to the inner jet and the
outer jet, respectively.

Using the result of Eq. (2.7) we can generate expressions
for the temperature and species on the fuel and oxidizer
sides of the flame as follows. On the fuel side we have

(27)

Wy,
T=T,5+ [To+ Y"”?Q'TVEZ_F] (1—5), (28)
vty

Weve

r=YrS+ Yy, (S—1), (2.9)
Wyvy
Y,=0, (2.10)
Wy
Yp="Yy, W” L1—8), {2.11}
Yy=Yy(1=8)+Y,8S (2.12)
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On the oxidizer side we have

T= TO(I—S)‘F[EQ- Yi + TJJ S,
2

where Pr,; is a reference

Prandt]l num ;
thermal conductivity of the ber and } is the
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where the max operator is equivalent to the intrinsic
function AMAX 1 in FORTRAN.

3.2. Newton’s Method with Adaptive Time Steps

The system of discretized equations (see [25] for detail )
including an unsteady term is given by :

.
DS+ F($)=0,

(3.2)
where D is a scaling matrix and F is the steady-state residval
function evaluated at the solution ¢. If the unsteady term is
implicitly differenced with a backward Euler method, we
have '

(¢ =4 ")

At =0,

Fl¢")=F(¢")+ D (3.3)

where ¢" and ¢"~! are the solutions at step n and n—1,
respectively, and Ar"=¢"—¢""'. The above system of
equations can be solved efficiently using a damped and
modified Newton iteration [17, 257,
J(@)gF+ ! — ¢5) = — AXF(¢5), k=0,1,2,.., (34)
where A* is the damping parameter at the kth Newton
iteration. J(¢*) is the Jacobian matrix,
o _ 0F(g")

=" (3:5)

_ With the spatial discretizations described in Section 3.1,
the Jacobian matrix in (3.5) can be written in block nine-
diagonal form. For preblems involving complex transport
and chemistry models, it is often more efficient to evaluate
the Jacobian matrix numerically as opposed to analytically
[3, 14]. Once the Jacobian matrix is formed, the Newton
equations (3.4) can be solved by a matrix solver. Given an
initial solution estimate, we follow the transient solution
(Eq. (3.3)) until the Euclidean norm of the residual,
| F(¢™)]!;, is small enough so that Newton’s method can be
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the new grid to generate the initial solution estimate for the
calculation on the new mesh. The grid refinement may be
applied several times depending on the particular problem.

3.3. Primitive Variable Formulation with Newton's Method

The difficulties with the primitive variable formulation lie
in the treatment of the pressure terms in the momentum
equations and the velocity components in the continuity
equation. If the first-order derivatives of the pressure in the
momentum equations are discretized by a central difference
operator on a regular grid, a zigzag pressure field will be
regarded as realistic by the momentum equations [15].
A similar kind of difficulty arises in discretizing the con-
tinuity equation. However, these difficulties can be resolved
by employing the staggered grid technique. In the staggered
grid, the axial velocity u; ; is shifted half way from the
regular grid point to the point (i + 1, j); the radial velocity
v, ; is similarly moved to the point (i, j + 3}, and the rest of
the dependent variables are still kept at the regular point
(i, 7) (see Fig. 2). The structure of the present staggered grid
requires specification of the pressure boundary condition at
the outlet of the reactor, which reflects the physical charac-
teristics of internal flows. It is worth mentioning that the
shifting of grids for the velocity only moderately increases
the programming complexity on a rectangular mesh. A by-
product of the approach is that it increases the accuracy of
the discretization for some of the first-order derivatives. For
example, the continuity equation can be discretized using
central differences at adjacent points. In addition, it
enhances the diagonal dominance of the Jacobian matrix
due to the compact points at each grid cell.

As we discussed in Section 1, a direct matrix solver is still
infeasible for the calculation of reacting flows, Therefore, a
key factor in the primitive variable Newton’s method is the
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successful application of a block-line iterative method for
the solution of the linear Newton equations (3.4). The struc-
ture of the nine-strip blocks in the Jacobian matrix should
be kept so that the block-line tridiagonal iteration method
can be applied efficiently. While a direct matrix solver can
be applied to any nonsingular matrix, a block-line tri-
diagonal iterative method without pivoting can only be
applied to a nonsingular matrix without zero diagonal
clements. Since the pressure does not explicitly appear in the
continuity equation, some zero diagonal elements are
present in the Jacobian matrix. As a result, we employ a
block-line tridiagonal iterative method with partial pivoting
[87. In this way we only require that the overall matrix and
each diagonal block be nonsingular.

3.4. Stream Function—Vorticity Formulation with Newton's
Method '

Newton’s method applied to the stream function-
vorticity formulation is presented in detail in [17]. In the
present work, we solve for the vorticity w as one of the
dependent variables instead of w/r asin [ 12, 17]. This gives
the advantage of utilizing Dirichlet boundary conditions for
the vorticity at the symmetric line and thus avoids the
undefined value of w/r at the same boundary.

3.5. The SIMPLER Algorithm

The SIMPLER algorithm described in [157] is modified
to caiculate compressible reacting flows. Due to the large
variation of the density occurring in reacting flows, the
pressure and pressure correction equations must be solved
exactly to ensure the conservation of mass before calculat-
ing the other equations, e.g., the conserved scalar equation
{Eq. (2.5)). We initially encountered difficulties in calculat-
ing the pressure and pressure correction equations when
using a simple tridiagonal method. The time step had to be
kept very small in order for the iteration to converge. Due
to the relatively small size, the very sparse nature, and the
same structure of the pressure and pressure correction
equations, a direct sparse matrix solver, YSMP [57], was
employed to solve these two equations. As a result, mass is
conserved over each grid cell after the velocity correction is
made.

4. NUMERICAL RESULTS AND DISCUSSION

The overall reaction for a methane-air system with an
inert gas (N,) is
CH,+20,+N,-2H,0+CO,+N,. (4.1)

The reactor configuration is such that the radius of the inner
fuel jet R,=0.635 cm, the radius of the outer oxidizer jet
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R,=254cm, and the length of the tubuiar pyrex shield
Z=30.0cm. The flow conditions at the inlet (z=0)} are
given by

r< R,,
v, = 0.0 cm/s, v, = 4.50 cm/s, T=298K,
Yeu, =10, Yo,=Ymo=Yco,= Yn,=0;
R;<r<R,,
»,=00cmfs, v,=988cmfs, T=298K,
Yo,=0232,  Yy,=0768, (4.3)

YCH4 = YH;O = YCO: =0.

The pressure at the exit is p = 1 atm. The shield temperature
is approximated at 298 K. The peak burning temperature is
estimated to be 2050 K from the experimental data [12].
For simplicity, we denote p-w-v as the primitive variable
solution and y- as the stream function—vorticity solution
with Newton’s method in the following discussion.

The numerical solutions are first computed on a 55 x 50
nonuniform grid with all three methods discussed in the
previous section. This initial grid is constructed by using
algebraic expressions [1] to cluster grid points in the
regions of high spatial activity (e.g., near the solid wall, the
fuel and air jet boundaries). The converged solutions are
used to refine the grid. The grid refinement is applied two
times to produce grids of 65 x 65 and finally 75 x 75 points.
The solution on the new mesh is easily obtained with a small
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FIG. 3. Compuied axial profiles of the conserved scalar and the axial
velocity at the centerline (r =0) from two sets of grids, 75(z) x 75(r} grid
(solid line), 100{z) x 90(r) grid (dashed line). (The lines are overlapped.)



